Improved Linear Programming Bounds on Sizes of Constant-Weight Codes

نویسندگان

  • Byung Gyun Kang
  • Hyun Kwang Kim
  • Phan Thanh Toan
چکیده

Let A(n, d, w) be the largest possible size of an (n, d, w) constant-weight binary code. By adding new constraints to Delsarte linear programming, we obtain twenty three new upper bounds on A(n, d, w) for n ≤ 28. The used techniques allow us to give a simple proof of an important theorem of Delsarte which makes linear programming possible for binary codes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Bounds for the Sizes of Constant Dimension Codes and an Improved Lower Bound

We study asymptotic lower and upper bounds for the sizes of constant dimension codes with respect to the subspace or injection distance, which is used in random linear network coding. In this context we review known upper bounds and show relations between them. A slightly improved version of the so-called linkage construction is presented which is e.g. used to construct constant dimension codes...

متن کامل

Upper Bounds for Constant - Weight

| Let A(n; d; w) denote the maximum possible number of codewords in an (n; d; w) constant-weight binary code. We improve upon the best known upper bounds on A(n; d; w) in numerous instances for n 6 24 and d 6 10, which is the parameter range of existing tables. Most improvements occur for d = 8; 10, where we reduce the upper bounds in more than half of the unresolved cases. We also extend the e...

متن کامل

Constant Weight Codes with Package CodingTheory.m in Mathematica

The author offers the further development of package CodingTheory.m [1] in the direction of research of properties and parameters of Constant weight codes (lower and upper bounds) based on works [2], [3] and also using the Table of Constant Weight Binary Codes (online version, Neil J. A. Sloane: Home Page http://www.research.att.com/~njas/codes/Andw/) and the table of upper bounds on A(n, d, w)...

متن کامل

New upper bounds on codes via association schemes and linear programming

Abstract. Let A(n, d) denote the maximum number of codewords in a binary code of length n and minimum Hamming distance d. Upper and lower bounds on A(n, d) have been a subject for extensive research. In this paper we examine upper bounds on A(n, d) as a special case of bounds on the size of subsets in metric association scheme. We will first obtain general bounds on the size of such subsets, ap...

متن کامل

Upper bounds for constant-weight codes

Let ( ) denote the maximum possible number of codewords in an ( ) constant-weight binary code. We improve upon the best known upper bounds on ( ) in numerous instances for 24 and 12, which is the parameter range of existing tables. Most improvements occur for = 8 10 where we reduce the upper bounds in more than half of the unresolved cases. We also extend the existing tables up to 28 and 14. To...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1108.5104  شماره 

صفحات  -

تاریخ انتشار 2011